
531

Third In,ternadonal Conference on Inverse Design Concepts and Opurnizauon in Engmeenng Sciences
O'CTDES-IID. Editor: G.S, Dulikravich, Washington _.C.. October 23-25. 19ql,

A NEW METHOD OF OPTIMAL DESIGN FOR A TWO-DIMENSIONAL

DIFFUSER BY USING DYNAMIC PROGRAMMING

Chuangang Gu (Ph.D, Prof.)

Moujin Zhang (Doctor Degree Candidate)

Xi Chen (Ph.D)

Yongmiao Miao (Ph.D., Prof.)

Dept. of Power Mach. Eng.

Xifan Jiaotong University P. R. China

ABSTRACT " (

A new method for predicting the optimal velocity distribution on the wall of a two-dimensional

diffuser is presented in the paper. The method by Principle of Dynamic Programming solves the

optimal control problem with inequality constraints of state variables. The physical model of

optimization is to protect the separation of the boundary layer while getting to be maximum pressure

ratio in a diffuser of a specified length (or getting to the shortest length in a specified pressure ratio).

The calculation results are fairly in agreement with the experimental ones. It shows that optimal veloci-

ty distribution on a diffuser wall should be as: the flow decelerates first quickly and then smoothly,

while the flow is near separation but always protects from it. The optimal velocity distribution can

directly be used to design the contour of the diffuser.

INTRODUCTION

A diffuser is an important part of compressors, fans and other air ducts. More and more atten-

tions have been paid to its design. In the past dozens of years, the popularization and development of

the optimization technique make it possible to design a diffuser with optimal velocity distribution

The index of optimizing a diffuser is to obtain the highest pressure ratio under the condition of a

minimum constructional length. Generally speaking, in order to get an optimal shape of a diffuser, it is

necessary to know an optimal velocity distribution on its wall. With the distribution, the boundary lay-

er can be avoided seperation and a maximum pressure ratio (or pressure recovery) can be obtained in a

specified length.

Nowadays, most designs of diffusers, which are two-dimensional or axial-symmetrical, are still

based on experience. Designers often use the criteria of the diffusing angle or the equivalent diffusing

angle and one-dimensional calculational method to design it. Obviously, it is too simple to reach the

index of the optimal design.

Stratford(1959) proposed that the loss in a diffuser with the minimum length is the minimum

while the boundary layer inside it is close to but just before occurrence of separation, then the velocity

distribution is the best and the shape of the diffuser is optimal. Some researchers, such as H. liebeck,

H. Fernboly, have used this principle to make some optimal designs.

Many authors also investigated the flow field in a diffuser and study how to control the flow
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separaction.

Some authors attempt to use the optimal control theory to solve the optimal design of a diffuser,

because the governing equations of the flow in it are differential ones.

Gu and Ji (1987) proposed an optimal design problem of a diffuser, using the optimal control the-

ory and the boundary layer theory. The optimal velocity distribution on its wall was obtained by using

Pontryangin's maximum principle.

In order to meet the demands of engineering application, the optimal problem has to satisfy somc

constraints in both aerodynamics and strength which can be divided into two parts: one is called as

constraint of state variable and another constraint of control variable. Those constraints arc often

inequality and make it very difficult to solve the problem in mathematical treatment.

It is well known that Pontryagin's principle can only solve the optimal control problem with con-

straints of control variables. To overcome the difficulty, many authors have done some research work

and modifications such as continuous transfer techique (Jocobson, 1969; Gu, 1987) and expanded pen-

alty function method (Gu and Miao, 1987).

However, for a problem with more inequality constraints of state variables the treatment is not ef-

ficient which have been stated by Gu and Miao(1987). That is to say, The more the constraints, the

more the difficulties. On the contrary, the principle of dynamic programming is quite good at treating

of state and control constraints. The more the constrains, the faster the calculation, because the numer

of considered states and decisions decreases in seeking optimal decision.

In the present work, a physical model and a mathematical expression for dynamic programming

are established and calculated. The result yielded by the method is quite in agreement with not only the

experimental ones but also the result by Pontryagin's maximum principle.

ESTABLISHMENT OF AN OPTIMAL DESIGN PROBLEM OF A DIFFUSER

It is well known that the flow losses in a diffuser mainly consist of separation loss and friction one.

Obviously, the former is greater than the latter. The friction loss is always inevitable. However, it

doesn/t vary greatly because the friction coefficient is approximately a constant in the fully-developed

turbulent flow. The total friction loss can be considered as increasing proportionally with the axial

length of a diffuser. So the key to designing an efficient diffuser is to avoid the separation of boundary

layer. Considering the two factors mentioned above, Stratford. (1959) proposed that the properties of a

diffuser with the minimum length and without boundary layer separation is optimal.

Generally, the turbulence degree at the inlet of a diffuser in engineering is so high that we can as-

sume for convenience that the boundary layer has become a turbulent one at the inlet edge. And

incompressible flow is only considered in present work.

The typical expressions of a optimal problem for a diffuser are as follows:

A) Pressure rise coefficient is maximum (i.e. the discharge velocity is minimum) under the condi-

tion of a provided constructional length and without separation of the boundary layer.

B) The length of a diffuser is minimum under the condition of a provided discharge velocity (i.e.

the pressure rise coefficient is known) and without separation of the boudnary layer.

It can be proved that the expressions A) and B) are correlative.
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The separation of the boundary layer is a very complex problem. According to the change of ve-

locity in main flow, the separation of boundary layer can be predicted by some experimental formulas

to some extent. The following equations are adopted as the basis of solving the optimal problem, (Ref.

1,3,4,5,6,7,8,9, I0).

The velocity shape factor of boundary layer is introduced as follows:

3zdu
Re"6_ t_m = 1 / 4 turbulent flowr

m 1 laminar flow (1)Udx

where

62= 0 _ 1-_ dy Re_,- v

U is the velocity of maih flow.

F > 0 denotes acceleration flow, and F < 0 deceleration one. So F can be used to judge whether the

separation happens or not.

For a deceleration flow, the relationship between 32and U is as follows (Ref. 1) :

I (U32) 1/']6 0.0175 Uax6Zdu(-U-_) '/"
d -- = --4.15_-v-7 (2)
dx 2 v

For convenience, the length of a diffuser, L, is used as a characteristic length; the velocity at the in-

let, C, as a characteristic velocity. Then Eq. (2) can be rewritten in a non-dimensional form. The

non-dimensional length of a diffuser contour is S = X / L, the non-dimensional velocity V = U / C,

the non-dimensional momentum thickness 0=32/L. So the Re 32 is

Re62 = U . t52/v= V . O. Re °

where Re 0 = C • L / v at the inlet of the diffuser.

Then Eq. (2) becomes as:
d

r_o(Reo v 0)'/'J _ 0 dV (Reo V. O)
1/4

a-_ • • =0.0175 - 4.15 • _ a-_ " (3)

Substituting the non-dimensional form of Eq. (1) into Eq. (3), we yield
dO -,/4

- (0.014- 3.52 • F)(Reo • V • e) (4)ds

According to the result of Nikuradse's experiments, Buff proposed that the boundary layer will sepa-

rate when F is not greater than -0.06. As stated by Gu and Ji(1987) to ensure the flow in a diffuser to

be far from separation, we utilize the limit of F as :
- 0.04_<F _<0

MATHEMATICAL EXPRESSION OF THE OPTIMAL PROBLEM

The mathematical expression of the index of optimization A) is as follows:

Index function:

J( * ) = V( * )_ rnin

S.l.

(5)
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dV

ds

dO -1/4

ds

0 > F >t - 0.04

V(o) = 1, 0(o) = 0
o

V( * ), O( * ),fi'ee

So the mathematical expression for dynamic programming solution is as follows:

Indcx function:

- F . V 3/('0-5/4"Re-'/4
o

-- (0.014-- 3.52 • F)(Reo • V • O)

(6- ])

(6 - 2)

(7)

(8)

(9)

S.I.

1

J(1) fo FV3140-514_ -114 .
= l_eo cl$_min

dV / ds = FV3/'0-5/4Re -1/4
o

dO/ ds = (0.014 - 3.52F)(Re ° VO) -_/"

initial condition: V(o) = 1 0(o) = 0
o

control constraint: - 0.04 _< F < 0

state constraint: 0<V<I 0 _< 0
o

Quantizing the equations listed above, we yield:

E ]tJ= min AS* F(k)V(k)3/40(k)-S/4Reo t/4
T(k )

V(k + 1)= V(k)+ AS* [F(k)V(k)3"O(k)-s/'Re:'/" 1

0(k + 1)= 0(k)+ AS * {(0.014- 3.52F(k)[Re ° V(k)O(k)]

- 0.04 _< F(k) < 0

0 < V(k) <_ 1

0o <_e(k)

and the iterative relation becomes

(10)

(6- ])

(6- 2)

(]1)

(]2)

(13)

(14)

(15)

(]6)

(]7)

(]8)

(]9)

J(V,O,k) min f AS * 3/,0(k) -'/' '/'1 1)t

[r(k)V(k) Re + J(V,O,k +

T {k } "

)

J(V,O,N) = 0

(20)

CALCULATION RESULT AND ANALYSIS

In calculation, Reo and N are taken as 106 and 10 respectively. The state variables and control

variables are quantized respectively. The sets of admissible state variables are as follows:

V = {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}

0= (0.00226, 0.00508, 0.00781, 0.01058, 0.01336, 0.01890, 0.02168, 0.02445, 0.02722, 0.03}

Then the allowed quantized states are:
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_'(0.4, 0.00226), (0.4, 0.00508), (0.4, 0.0078), ...,...,.-.,...,..-,(1, 0.03)}

And the set of admissible control variable is as follows:

F = _'-0.04, -0.035, ---0.03, -0.025, -0.02, -0.015, -0.01, -0.005 }

The two-dimensional dynamic Programming Computatinal procedure is used because there arc

two state variables, the calculation procedure is presented in the computer flow chart. The initial value

of V and 0, that is, the values at stage o, are taken as 1 and 0.00226 respectively. The calculation re-

suits at stage 5 are presented in Table 1. There is only a part of all results because the results arc too

many to list them all. At each stage, a similar table can also be listed.

In the table 1, a grid point stands for a allowed quantized state, the value put to the right-up of a

grid point is the optimal value of index J at this state, and the one put to the right-down of the grid

point is the corresponding optimal value of control variable F.

Computer flow chart.

Begin

Giving the maximum stage number N. Quantizing the state variables (V and 0) and

the control variable F

K=N-1 ]

For each allowed state, calculating the index value J by Eq.(20) according to the set

of allowed control value F. Finding the minimum value of index value J and corre-

sponding control value F. The J and F are taken as the optimal values of index and

control variables respectively for this state

_KK = 0y.__ K=K-1

Giving the values of V and 0 at stage 0 ]

I-fl =0I

Calculating the optimal value F(k) by interpolation at stage k, then calculating the

values of V(k+l) and 0(k+l) by Eq.(15) and Eq.(16)
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As shown in Fig. 1, curve ABC is an optimal velocity distribution of the diffuser. The results are is

quite in agreement with the experimental data and the results calculated by Pontryagin's maximum

principle by Gu and Ji,(1987).

The optimal velocity distribution ABC is also called as an optimal deceleration curve for a

diffuser. In the range above the curve, including the curve, there is no separation while F is not less

than -0.04; on the contrary, in the range under the curve, separation will happen. So the curve ABC is

a critical line (F = -0.04) between separation and non-separation.

Drawing a deceleration curve AB'C' in the nonseparation range, we can find that for a diffuser

with a specified length, the discharge velocity V * is always less then V'. On the other hand, for a speci-

fied discharge velocity V' (which menas a specified pressue rise coefficient) the corresponding optimal

length S" is always less than S'. That means reducing velocity along the optimal deceleration curve

ABC will yield the maximum pressure rise coefficient in a specified length or the minimum length of a

diffuser in a specified pressure rise. In this case, the length is minimum and the loss is nearly minimum

because there is no separation.

From the physical explanation of the optimal deceleration curve in Fig.1 It is also proved that the

two expressions of index functions A) and B) of the optinal control problem are correlative. That is,

the optimal velocity distribution obtained by one index function can satisfy another automatically.

THE CALCULATION OF THE DIFFUSER CONTOUR

The contour of the diffuser is calculated by means of the optimal velocity distribution on the sur-

face, so that it is also called as optimal design problem or inverse problem. It is well known that solving

the problem directly in X-Y plane will involve non-identifed of calculated region. So coordinate

transformation is neccessary. It is the easiest way to transfer the X-Y plane to ¢-W plane.

The governing Equations. in ¢-W plane has been deduced strictly in the paper as:

Taking an element in X-Y plane and considering incompressible, potential flow, the continuity

equation and non-rotation equation are as follows:
aV aV

+ Y = 0 (21)
ax ay

aV aV
Y _ = 0 (22)

ax ay

Velocity vector is
V= IVI" (i • cos#+ j" sin#) (23)

Where IV1 is the amplitude of V. /_ is the angle between Vand coordinate line X.

The transform relation between X-Y plane and (I)-q' plane is:

•f_ = (Y,v ".f, - Y® ".f'v )/l } (24)
.f=(- X,v f ¢ + X® . .f,) l J

Where J is Jacobi matrix.

Substituting Eq. (23) and Eq. (24) into Eq.(21), because of J=#0, then we yield:
aV
_--_(Y_,cos#-X_sin# )+aV(_aW Yicos#+X®sin# )
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asinfl . aeosB asinfl
+ v. (-X_ a--'-_ + r_ _-_ )+ v(x_ a_

. aCOS_ x

-- - r®-7_-- _= o (2s)

Thc four items on the left side of Eq. (25) are as follows respectively,

aV aV _j 2 2
a-O "(Yv "c°sB-Xvsinfl)=a---o " Xv + Y_'

aV

a--_ " (- Y® " cosfl + Xcsinfl = 0

_ asinfl . acosfl'_v. - x. + r. j=o

V" (X® asinfl . acosfl aft _/ 2

In deducing the definations of normal and tangent unit vectors of equal ¢ and equal u? lines, Eq.

(25) can be rewritten as,

aV _j 2 2 aft/ 2 2
a'-'O " Xv + Yv + V- _-_ X® + Y_ =0 (26)

It can be easily proved that:

J 2 2 ,ff 2 2"Yv + Yv = X_ + Y_ = V/J

And substituting it into Eq.(26), finally, the continuity equation in ¢-_P plane can be given as:
aln V aft
a4) + _ = 0 (27)

In the similar way, the non-rotation equation in ¢-_P plane is:

aln V aft = 0 (28)
a_ a_

Two Laplac&s Eqs. can be obtained from Eq. (27) and Eq.(28):

a21nV a2lnV
-- + - 0 (29)
a2_p aO 2

afl---_-2+ aft2 = 0 (30)

a¢ 2 a_ 2

The velocity distribution within the diffuser can be obtained by solving Eq. (29) with ADI

method. Then from Eq.(28) the values offl on the top line 0F=0 or _'= 1) of the potential flow region

can also be yielded, so the shape of potential flow region can be defined. The diffuser contour can be

modified by adding thickness of boundary layer. The calculation result is shown in Fig.4, the line of

Y/L = 0 is the central line of diffuser. The shape is quite similar to the real size of B. S. Stratford's dif-

fuser. The equivalent diffusing angle of the diffuser is 19 ° (integral angle), and is much greater than

ordinary recommended angle.

CONCLUSIONS

The optimal deceleration curve (i.e. optimal velocity distribution) on the wall of a diffuser is first

obtained by using the principle of dynamic programming. In solving optimal control problem of fluid

mcchnics with inequality constraints of state and control var/ables, the dynamic programming method

has many advantages over others. The physical model of optimization for a diffuser is to avoid the
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separation of boundary layer while getting to the maximum pressure rise in a diffuser of a specified

length (or getting to the shortest length in a specified pressure rise). The calculation results are fairly in

agreement with the experimental ones and the results calcaulated by Pontrayagin's maximum principle.

The optimal velocity distribution on a diffuser wall should be as: the flow decelerates first quickly

and then smoothly, and the flow is near separation but always protects from it. The optimal velocity

distribution can also be expanded to design an unsymmetric diffuser.
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e =.0022&

e:.OOS03

@'-.00781

e=.OlOS8

Q=.01336

e:.01613

0=°01890

0.760

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.750 0.763 0.776 0.789 0.803 0.818 0.842 0.870 0.930

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.822 0.831 0.840 0.849 0.858 0.867 0.879 0.907 0.993

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.863 0.870 0.877 0.884 0.891 0.897 0.90G 0.926 1.017

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

O.B90 0.895 0.901 0.906 0.912 0.917 10.924 0.938 1.028

-.040 -.040 -.040 -.040 -.040 -.040 I-.040 -.040 -.040

0.909 0.913 0.917 0.922 0.926 0.931 0.936 0.947 1.031

-.040 -.040 -.040 -.040 -.040 -.040 i-.040 -.040 -.040

0.923 0.926 0.930 0.934 0.938 0.941 0.946 0.954 1.030

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.935 0.938 0.941 0.944 0.948 0.9G1 0.954 0.961 1.028

040

V=O._5 V=0.80 V=0.75 V=o._o V=o.6b V=O.60 V=0.5$ V=0.50 V=0.45

Table 1

/ 1



540

Third International Conference on Inverse Design Concepts and Optimization in Engineenng Sciences

(ICIDES-IIr). Editor: G.S. Dulilcmvich. Washington D.C.. October 23-25. 1991.

F _ _ p_SENT RESULT

l.O A .... RESULT BY G-U,Ig87.

,_ z_ EXpERIJ'IEN7 RESULI'

O,_J _ 137 STRATFo;RD.

0,sv'-- ---I--. - -_
SE9¢_P,Arl0N F_qN_E l

_ , - _ _--_._o.s l, 1
S" $' $

o o,_ 0,4. 0.6 o.8 1,0
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